Skip to main content

Resolution

Resolution: sensor characteristic that affect what can be seen in an image
Source: NASA
  • Spatial resolution
  • Spectral characteristics
  • Temporal characteristics
  • Sensor sensitivity
SPATIAL RESOLUTION
  • Spatial resolution refers to the amount of detail that can be detected by a sensor. It is the smallest unit measured;
  • Images where only large features are visible are said to have coarse or low resolution. In fine or high-resolution images, small objects can be detected.
  • Detailed mapping of land-use practices requires a much greater spatial resolution.
  • Size of an image pixel in ground dimensions.
  • Usually represented by the length of one side of a square (i.e., 30m resolution).
The spatial resolution of passive sensors depends primarily on their Instantaneous Field of View (IFOV).
The IFOV is the angular cone of visibility of the sensor (A) and determines the area on the Earth’s surface which is “seen” from a given altitude at one particular moment in time (B). The size of the area viewed is determined by multiplying the IFOV by the distance from the ground to the sensor (C). This area on the ground is called the resolution cell and determines a sensor’s maximum spatial resolution.
Spatial Resolution Advice
  • Moving from detection => identification => analysis requires finer resolution.
  • Rule of thumb – select resolution ~1/10th the size of the feature you want to examine.
  • Rule of thumb is not very useful – strongly linked to feature characteristics (contrast, location, shape…).
  • Get advice from others – experience is invaluable.
  • High contrast between features allows detection of sub-pixel sized features.

Comments

Popular posts from this blog

Welcome Post

Welcome to my new blog. To begin with, I would highlight the  objective of the blog  briefly. When I first ventured into the field of Remote Sensing and GIS, it was a period when the subject was treated as a tool or device for solving geospatial problems. Even then it had the clout of an academic discipline, which was overlooked by a lot of mainstream academicians. Even now I find it amusing when this rich multi-disciplinary subject is referred to as a mere tool. Nevertheless, I will make a sincere attempt to take the discipline to as many enthusiasts and practitioners of Remote Sensing and GIS as possible in a simple manner.  The entire purpose of this blog will be to provide -  Document-based tutorials; Powerpoint presentations; Project development techniques; Dissertation guidelines; Book reviews; Sample test questions; Practical training (through youtube videos*); To conclude, I would give a brief  introduction  about me. I am a Remote ...

Electromagnetic Radiation

Electromagnetic Energy Interactions When the energy being remotely sensed comes from the Sun, the energy: Propagates through the vacuum of space Interacts with the Earth's atmosphere, surface, and atmosphere (reflected, absorbed, transmitted); Reaches the remote sensor (interacts with various optical systems, filters, emulsions, or detectors); Electromagnetic Radiation Transfer of energy from one body to another in the form of electromagnetic waves is referred to as Electromagnetic Radiation. To understand how electromagnetic radiation is created, how it propagates through space, and how it interacts with other matter, it is useful to describe the processes using two different models popularly known as Electromagnetic Radiation Models:  the wave model; the particle model Wave Model of EM Energy An electromagnetic wave is composed of electric and magnetic vectors that are orthogonal to one another and travel from the source ...

Basic of Remote Sensing V

How is Energy Transferred? The energy can be transferred in the three basic ways: conduction, convection, and radiation. The transfer of energy by electromagnetic radiation (EMR) is of primary interest to remote sensing because it is the only form of energy transfer that can take place in a vacuum (the region between the Sun and the Earth). The Sun bathes the Earth’s surface with radiant energy causing the air near the ground to increase in temperature. The less dense air rises, creating convectional currents in the atmosphere. Energy may be conducted directly from one object to another as when a pan is in direct physical contact with a hot burner. Energy Interactions When Electro-Magnetic (EM) energy is incident on any given earth surface feature, three fundamental energy interactions are possible.  Reflection (ER) Absorption (EA) Transmission (ET) Incident Energy (EI) = reflected energy +  transmitted energy + absorbed energy Three forms...